3.2 Triangles


3.1 « 3.2 » 3.3

3.2 Contents


3.2.1 Universal Properties

Closed planar objects with three straight sides, and a sum of lengths of any two sides greater than the third
Jump to Vivaldi's Theorem
Jump to Heron's Formula
Jump to Polygons Universal Properties
Jump to Circles
Jump to Law of Sines
Perimeter a+b+ca+b+c
Area (non-obtuse) bh/2b·h/2
Sum of Angles π\pi

3.2.2 Types & Terminology

Right (all others are oblique)
Obtuse
Acute
Equilateral
Isosceles
Scalene
Congruent triangles

3.2.3 Intersections

Centroid (G)

Median intersection point

Line segments extend from vertices (corners) to the sides at the midpoint
Orthocenter (H)

Altitude intersection point

Line segments extend from vertices to the sides at which right angles are formed
Circumcenter (O)

Perpendicular bisector intersection point

Line segments extend at right angles from the midpoint of each side
Incenter (I)

Angle bisector intersection point

Line segments extend from vertices dividing the angles of the vertices in half
Nine-Point Circle (N=center)

Circle passing though the midpoint of each side, the point of altitude on each side, and the midpoint of lines between each vertex and the orthocenter
Euler Line

Line passing through G, H, N, and O of all non-equilateral triangles (In equilateral triangles, G, H, N, O and I all overlap in a single point)

3.2.4 Vivaldi's Theorem

In an equilateral triangle, the sum of distances from any inner point extending orthogonally to the sides is equal to the height of the triangle
Proof
Given side length LL and height hh, the triangle area equals the sum of the inner triangle areas with altitudes aa, bb, and cc Lh2=La2+Lb2+Lc2\frac{L·h}{2}=\frac{L·a}{2}+\frac{L·b}{2}+\frac{L·c}{2} Multiply by 2/L2/L

3.2.5 Right Angle (Pythagorean) Theorem

h2=x2+y2h^2=x^2+y^2
Jump to Distance Formula
Jump to Heron's Formula
Jump to Right Angle Identities
Proof
The square c2c^2 has area equal to all the triangle areas subtracted from the largest square cc=(a+b)(a+b)4(12ab)c·c=(a+b)(a+b)-4·\Big(\frac{1}{2}·a·b\Big) Expand c2=a2+2ab+b22abc^2=a^2+2·a·b+b^2-2·a·b Cancel like terms

3.2.6 Heron's Formula

A=s(sa)(sb)(sc)A=\sqrt{s·(s-a)(s-b)(s-c)} s=(a+b+c)/2 (semi-perimeter)s=(a+b+c)/2\text{ (semi-perimeter})
Proof
Given a triangle with sides {a,b,c}\{a,b,c\}, divide it with an orthogonal line hh to form two right triangles, dividing line bb into lines xx and bxb-x
Image taken from BYJU's and edited
Apply the right angle theorem to determine the relationships and length of xx x2=c2h2x=c2h2x^2=c^2-h^2\therefore x=\sqrt{c^2-h^2} Apply the right angle theorem to determine the relationships of bxb-x (bx)2=a2h2(b-x)^2=a^2-h^2 Expand b22bx+x2h2b^2-2·b·x+x^2-h^2 Substitute xx and x2x^2 b22bc2h2+c2h2=a2h2b^2-2·b·\sqrt{c^2-h^2}+c^2-h^2=a^2-h^2 Simplify b22bc2h2+c2=a2b^2-2·b·\sqrt{c^2-h^2}+c^2=a^2 Isolate a2a^2, b2b^2 and c2c^2 to one side b2+c2a2=2bc2h2b^2+c^2-a^2=2·b·\sqrt{c^2-h^2} Square (b2+c2a2)2=4b2(c2h2)\big(b^2+c^2-a^2\big)^2=4·b^2·(c^2-h^2) Isolate h2h^2 h2=c2(b2+c2a2)24b2h^2=c^2-\frac{\big(b^2+c^2-a^2\big)^2}{4·b^2} Factor the right into a single fraction h2=4b2c2(b2+c2a2)4b2h^2=\frac{4·b^2·c^2-\big(b^2+c^2-a^2\big)}{4·b^2} Factor the numerator as a squared binomial h2=(2bc+b2+c2a2)(2bcb2c2+a2)4b2h^2=\frac{(2·b·c+b^2+c^2-a^2)(2·b·c-b^2-c^2+a^2)}{4·b^2} Factor the terms with bb and cc as squared binomials h2=((b+c)2a2)(a2(bc)2)4b2h^2=\frac{\big((b+c)^2-a^2\big)\big(a^2-(b-c)^2\big)}{4·b^2} Factor each term in the numerator as squared binomials h2=(b+c+a)(b+ca)(a+bc)(ab+c)4b2h^2=\frac{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}{4·b^2} For each negative variable within a term, both add and subtract the variable in the term h2=(b+c+a)(b+c+a2a)(a+b+c2c)(a+b2b+c)4b2h^2=\frac{(b+c+a)(b+c+a-2·a)(a+b+c-2·c)(a+b-2·b+c)}{4·b^2} Take the square root h=(b+c+a)(b+c+a2a)(a+b+c2c)(a+b2b+c)2bh=\frac{\sqrt{(b+c+a)(b+c+a-2·a)(a+b+c-2·c)(a+b-2·b+c)}}{2·b} Multiply by b/2 to obtain the triangle area A=(b+c+a)(b+c+a2a)(a+b+c2c)(a+b2b+c)4A=\frac{\sqrt{(b+c+a)(b+c+a-2·a)(a+b+c-2·c)(a+b-2·b+c)}}{4} Factor the 44 into the radicand and expand it into the terms A=(b+c+a2)(b+c+a2a)(a+b+c2c)(a+b+c2b)A=\sqrt{\bigg(\frac{b+c+a}{2}\bigg)\bigg(\frac{b+c+a}{2}-a\bigg)\bigg(\frac{a+b+c}{2}-c\bigg)\bigg(\frac{a+b+c}{2}-b\bigg) } Substitute (a+b+c)/2(a+b+c)/2 for ss

3.2.7 Distance Formula of a Line

d=(x2x1)2+(y2y1)2|d|=\sqrt{{(x_2-x_1)}^2+{(y_2-y_1)}^2}
Learn: Khan Academy
Jump to Vector Magnitude & Unit Vector
Jump to Sum & Difference Identities
Proof
Apply the right angle theorem to (x1,y1)(x_1,y_1) and (x2,y2)(x_2,y_2)

3.2.8 Right Angle Definitions

Jump to Regular Polygons
Jump to Circles
Jump to Unit Circle
Jump to Right Angle Identities
Jump to Law of Sines
sin(θ)=opphypcos(θ)=adjhyp\sin(\theta)=\frac{\text{opp}}{\text{hyp}}\qquad\cos(\theta)=\frac{\text{adj}}{\text{hyp}} csc(θ)=hypoppsec(θ)=hypadj\csc(\theta)=\frac{\text{hyp}}{\text{opp}}\qquad\sec(\theta)=\frac{\text{hyp}}{\text{adj}} tan(θ)=oppadjcot(θ)=adjopp\tan(\theta)=\frac{\text{opp}}{\text{adj}}\qquad\cot(\theta)=\frac{\text{adj}}{\text{opp}}
Simple Trig Angles
Two simple triangles help identify certain values
Function 00 π/6\pi/6 π/4\pi/4 π/3\pi/3 π/2\pi/2
sin(θ)\sin(\theta) 00 1/21/2 1/21/\sqrt{2} 3/2\sqrt{3}/2 11
cos(θ)\cos(\theta) 11 3/2\sqrt{3}/2 1/21/\sqrt{2} 1/21/2 00
csc(θ)\csc(\theta) 22 2\sqrt{2} 2/32/\sqrt{3} 11
sec(θ)\sec(\theta) 11 2/32/\sqrt{3} 2\sqrt{2} 22
tan(θ)\tan(\theta) 00 1/31/\sqrt{3} 11 3\sqrt{3}
cot(θ)\cot(\theta) 3\sqrt{3} 11 1/31/\sqrt{3} 00

3.1 « 3.2 » 3.3