3.5 Conic Sections


3.4 « 3.5 »

3.5 Contents


3.5.1 Universal Properties

Two-dimensional subsets of a 3D (double) cone surface in which the shapes are determined by the intersection of a 2D plane
Image taken from CK-12 Foundation and edited
Learn: Khan Academy
Jump to Circles
Jump to Ellipses
Jump to Parabolas
Jump to Hyperbolas
Jump to Rotations
General Equation
$$A⋅x^2+B⋅x⋅y+C⋅y^2+D⋅x+E⋅y+F=0$$ All conic sections will be represented without rotation until the section on rotations. In other words, $B=0$.
Discriminant & Related Properties
$$\Delta=B^2-4⋅A⋅C$$ Assuming no other values:
Focus, Directrix & Eccentricity
A focus/foci is a point or set of points around which a curve is guided
Images taken from Varsity Tutors and edited
A Directrix is a fixed line perpendicular to the (major) axis of a function, which is determined by its focus and curvature
Image taken from GraphicMaths and edited
Eccentricity is a function's deviation from being circular, and a constant ratio given by $e=c/a$; $$\text{eccentricity}=\frac{\text{distance from any point to the focus}}{\text{distance from any point to the directrix}}$$
Image taken from CueMath and edited
Degenerate Conics
Conics when either a 2D plane intercepts the vertex of a double cone, or the result of the general equation yields a non-function by real algebraic definition

No result $A⋅x^2+A⋅y^2+1=0$
Point $A⋅x^2+A⋅y^2=0$
Line $D⋅x+E⋅y+F=0$
Intersecting lines $x^2-y^2=0$
Parallel lines $x^2-1=0$

3.5.2 Circles

Closed curves with all points equidistant to an internal point
Learn: Khan Academy
Learn: Paul's Online Notes
Jump to Double Angle Identities
Circumference $2·\pi·r$
Area $\pi·r^2$
Arc length $\theta·r$
Sector area $\theta·r^2/2$
Chord length (k) $2·r·\sin\Big(\frac{\theta}{2}\Big)$
Segment area $\frac{r^2}{2}·\Big(\theta-2·\sin\Big(\frac{\theta}{2}\Big)·\cos\Big(\frac{\theta}{2}\Big)\Big)$
Conic general equation $A·(x^2+y^2)+D·x+E·y+F=0,A≠0$
Standard equation ${(x-x_∘)}^2+{(y-y_∘)}^2=r^2$
Conic-standard conversions $x_∘=-D/(2·A)$
$y_∘=-E/(2·A)$
$r^2=(D^2+E^2-4·A·F)/(4·A^2)$
Focus Coordinates $(x_∘,y_∘)$
Eccentricity $0$
Directrix None
Annulus
A ring formed by two concentric circles in which all features of circles apply with respect to differences involving two radii
Perimeter $2·\pi·(R+r)$
Area $\pi·(R^2-r^2)$
Sector Area $\theta·(R^2-r^2)/2$
Deductive Logic for Area
Apply the area function of regular polygons, using the circumference as the perimeter and the radius as the apothem $$A=(2·\pi·r)·\frac{r}{2}$$
Proof of Arc Length
The arc length is a fraction of the circumference, therefore can be found by the ratio to it and its angle $$\frac{a}{2·\pi·r}=\frac{\theta}{2·\pi}$$
Proof of Sector Area
The sector area is a fraction of the circle area, therefore can be found by the ratio to it and its angle $$\frac{A_S}{\pi·r^2}=\frac{\theta}{2·\pi}$$
Proof of Chord Length
Use the radius and half the chord length to form a right triangle Use the sine function for the angle $$\sin\Big(\frac{\theta}{2}\Big)=\frac{k}{2·r}$$ Multiply by $2·r$
Proof of Segment Area
The segment area is the sector area minus the triangular area between the center and chord $$A_S=\frac{\theta·r^2}{2}-A_t$$ For the triangular area, use the chord length equation for the base and right angle definition with respect to the radius to find the height
$$k=2·r·\sin\Big(\frac{\theta}{2}\Big)$$ $$h=r·\cos\Big(\frac{\theta}{2}\Big)$$
Substitute the triangular area using these values for $(k·h)/2$ $$A_S=\frac{\theta·r^2}{2}-\frac{r^2}{2}·2·\sin\Big(\frac{\theta}{2}\Big)·\cos\Big(\frac{\theta}{2}\Big)$$ Factor $$A_S=\frac{r^2}{2}·\Big(\theta-2·\sin\Big(\frac{\theta}{2}\Big)·\cos\Big(\frac{\theta}{2}\Big)\Big)$$
Conic-Standard Conversion
Given the conic general equation with the properties for a circle, group the $x$ terms and $y$ terms, and isolate the constant $$A·x^2+D·x+A·y^2+E·y=-F$$ Divide by $A$ $$x^2+\frac{D}{A}·x+y^2+\frac{E}{A}·y=-\frac{F}{A}$$ Complete the square for the $x$ and $y$ terms $$x^2+\frac{D}{A}·x+\frac{D^2}{4·A^2}+y^2+\frac{E}{A}·y+\frac{E^2}{4·A^2}=-\frac{F}{A}+\frac{D^2}{4·A^2}+\frac{E^2}{4·A^2}$$ Factor $${\Big(x+\frac{D}{2·A}\Big)}^2+{\Big(y+\frac{E}{2·A}\Big)}^2=\frac{D^2+E^2-4·A·F}{4·A^2}$$ Equate the coefficients to the standard equation

3.5.3 Ellipses

Closed ovular curves whose points are the result of a constant sum between two internal points
Jump to Hyperbolas
Perimeter $4·a\lt 2·\pi·a, a\gt b$
Area $\pi·a·b$
Conic General Equation $A·x^2+C·y^2+D·x+E·y+F=0,A·C>0$
Standard Equation ${(x-x_∘)}^2/a^2+{(y-y_∘)}^2/b^2=1$
Conic-Standard Conversions $A=b^2$
$C=a^2$
$D=-2·b^2·x_∘$
$E=-2·a^2·y_∘$
$F=b^2·{x_∘}^2+a^2·{y_∘}^2-a^2·b^2$
$a^2=C$
$b^2=A$
$x_∘=-D/(2·A)$
$y_∘=-E/(2·C)$
Orientation horizontal if $C>A \land a>b$
vertical if $A>C \land b>a$
Center Coordinates $(x_∘,y_∘)$
Foci Coordinates $f=\big(x_∘ \pm \sqrt{a^2-b^2}, y_∘\big),a>b$
$f=\left(x_∘,y_∘ \pm \sqrt{b^2-a^2}\right),b>a$
Eccentricity $e=f/a=\sqrt{1-b^2/a^2},a>b$
$e=f/b=\sqrt{1-a^2/b^2},b>a$
Directrix $x=\pm a/e,a>b$
$y=\pm b/e,b>a$
Conic-Standard Conversion
Given the standard equation $$\frac{{(x-x_∘)}^2}{a^2}+\frac{{(y-y_∘)}^2}{b^2}=1$$ Multiply by $a^2·b^2$ $$b^2·{(x-x_∘)}^2+a^2·{(y-y_∘)}^2=a^2·b^2$$ Expand $$b^2·x^2-2·b^2·x·x_∘+b^2·x_∘^2+a^2·y^2-2·a^2·y·y_∘+a^2·y_∘^2=a^2·b^2$$ Rearrange to appear as the conic general equation $$b^2·x^2+a^2·y^2-2·b^2·x_∘·x-2·a^2·y_∘·y+b^2·x_∘^2+a^2·y_∘^2-a^2·b^2=0$$ Equate the coefficients to the conic equation

3.5.4 Parabolas

Open mirrored curves whose points are the same distance between a common internal point and an exterenal line.
Image taken from Varsity Tutors and edited
Conic General Equations vertical: $A·x^2+D·x+E·y+F=0$
horizontal: $C·y^2+D·x+E·y+F=0$
The following are in vertical form
Standard Equation $y=a·x^2+b·x+y_∘$
Vertex Equation $y=a·(x-x_∘)^2+y_∘$
Intercept Equation $y=a·(x-x_1)(x-x_2)$
Discriminant $\Delta=b^2-4·a·y_∘$ If $Δ \lt 0$, two $x$-intercepts
If $Δ=0$, one $x$-intercept
If $Δ>0$, no $x$-intercepts
Conic-Standard Conversion $a=-A/E$
$b=-D/E$
$y_∘=-F/E$
Vertex Coordinates $(x_∘,y_∘)=\big(-\frac{b}{2·a},y_∘-\frac{b^2}{4·a}\big)$
$x$-Intercepts $\lbrace (x_1,0),(x_2,0) \rbrace = \big(\frac{-b \pm \sqrt{b^2-4·a·y_∘}}{2·a},0\big)$
Fucus Length from Vertex $f=\frac{1}{4·a}$
Focus Coordinates $\big(-\frac{b}{2·a},y_∘-\frac{b^2+1}{4·a}\big)$
Eccentricity $1$
Drectrix $y=-f$
Conic-Standard Conversion
Rearrange the conic general equation to isolate the $y$ term $$E·y=-A·x^2-D·x-F$$ Divide by $E$ $$y=-\frac{A}{E}·x^2-\frac{D}{E}·x-\frac{F}{E}$$ Equate the coefficients to the standard equation
Standard-Vertex Conversion
Given the standard equation, isolate the $x$ terms $$y-y_∘=a·x^2+b·x$$ Divide by $a$ $$\frac{y-y_∘}{a}=x^2+\frac{b·x}{a}$$ Complete the square $$\frac{y-y_∘}{a}+\frac{b^2}{4·a^2}=x^2+\frac{b·x}{a}+\frac{b^2}{4·a^2}$$ Factor $$\frac{y-y_∘}{a}+\frac{b^2}{4·a^2}={\bigg(x+\frac{b}{2·a}\bigg)}^2$$ Multiply by $a$ $$y-y_∘+\frac{b^2}{4·a}=a·{\bigg(x+\frac{b}{2·a}\bigg)}^2$$ Isolate $y$ $$y=a·{\bigg(x+\frac{b}{2·a}\bigg)}^2-\frac{b^2}{4·a}+y_∘$$ Equate the coefficients to the vertex equation
Standard-Intercept Conversion
Given the quadratic formula with $y=0$, find the zeros of $x$

3.5.5 Hyperbolas

A mirrored set of open mirrored curvers whose points are the difference between two common internal points.
Image taken from BYJU's and edited
Reference Plus or Minus Notation
Conic General Equation $A·x^2+C·y^2+D·x+E·y+F=0, A·C \lt 0$
Standard Equation $(x-x_∘)^2/a^2+(y-y_∘)^2/b^2=1, a^2·b^2 \lt 0$
Standard Equation (Real Terms Only) $\pm (x-x_∘)^2/a^2 \mp (y-y_∘)^2/b^2=1$
Conic-Standard Conversion $A=b^2$
$C=a^2$
$D=-2·b^2·x_∘$
$E=-2·a^2·y_∘$
$F=b^2·{x_∘}^2+a^2·{y_∘}^2-a^2·b^2$
$a^2=C$
$b^2=A$
$x_∘=-D/(2·A)$
$y_∘=-E/(2·C)$
Orientation horizontal if $C \lt 0; a \isin ℂ$
vertical if $A \lt 0; b \isin ℂ$
Vertices $(x_∘ \pm a,y_∘) \lor (x_∘,y_∘ \pm b)$
Focus Coordinates $(x_∘ \pm \sqrt{a^2+b^2},y_∘) \lor (x_∘,y_∘ \pm \sqrt{a^2+b^2})$
Eccentricity $e=f/a=\sqrt{1+b^2/a^2}$
Directrix $x=\pm a^2/f \lor y=\pm b^2/f$
Asymptotes $y= \pm b·(x-x_∘)/a+y_∘$
Conic-Standard Conversion
The proof is the same for ellipses, however since by definition $A·C \lt 0$, either $a$ or $b$ must be imaginary. For the real-numbers-only representation, one of the terms is negated for $a$ and $b$ to both be positive.

3.5.6 Rotations 🔧

Conic section rotations occur exclusively when in the general equation $B \neq 0$ $$A·x^2+B·x·y+C·y^2+D·x+E·y+F=0$$ The angle of rotation is used to identify a new axis
Image taken from LibreTexts and edited
The original components are used to determine the new axis with respect to the angle of rotation
Image taken from LibreTexts and edited




$$x=x'·\cos(\theta)-y'·\sin(\theta)$$ $$y=x'·\sin(\theta)+y'·\cos(\theta)$$ $$A·\big( \big)^2+B·\big( \big)·\big( \big)+C·\big( \big)^2+D·\big( \big)+E·\big( \big)+F=0$$

3.4 « 3.5 »