5.6 Complex Analysis & Trigonometry


5.5 5.6 5.7

5.6 Contents

  1. Complex Number System 馃敡

  2. Analytic Function for $\sin(\theta)$ 馃敡

  3. Analytic Function for $\cos(\theta)$ 馃敡

  4. Analytic Function for $\csc(\theta)$ 馃敡

  5. Analytic Function for $\sec(\theta)$ 馃敡

  6. Analytic Function for $\tan(\theta)$ 馃敡

  7. Analytic Function for $\cot(\theta)$ 馃敡

  8. Analytic Function for $\sin^{-1}(x)$ 馃敡

  9. Analytic Function for $\cos^{-1}(x)$ 馃敡

  10. Analytic Function for $\csc^{-1}(x)$ 馃敡

  11. Analytic Function for $\sec^{-1}(x)$ 馃敡

  12. Analytic Function for $\tan^{-1}(x)$ 馃敡

  13. Analytic Function for $\cot^{-1}(x)$ 馃敡


5.6.1 Complex Number System 馃敡

Proof of Euler's Formula
Proof of Negative Natural Logarithms
Proof of Imaginary Natural Logarithms

5.6.2 Analytic Function for $\sin(\theta)$ 馃敡

$$\sin(\theta)=\frac{e^{i路\theta}-e^{-i路\theta}}{2路i}$$
Proof

5.6.3 Analytic Function for $\cos(\theta)$ 馃敡

$$\cos(\theta)=\frac{e^{i路\theta}+e^{-i路\theta}}{2路i}$$
Proof

5.6.4 Analytic Function for $\csc(\theta)$ 馃敡

$$\csc(\theta)=\frac{2路i}{e^{i路\theta}-e^{-i路\theta}}$$
Proof

5.6.5 Analytic Function for $\sec(\theta)$ 馃敡

$$\sec(\theta)=\frac{2路i}{e^{i路\theta}+e^{-i路\theta}}$$
Proof

5.6.6 Analytic Function for $\tan(\theta)$ 馃敡

$$\tan(\theta)=\frac{e^{i路\theta}-e^{-i路\theta}}{i路\big(e^{i路\theta}+e^{-i路\theta}\big)}$$
Proof

5.6.7 Analytic Function for $\cot(\theta)$ 馃敡

$$\cot(\theta)=\frac{i路\big(e^{i路\theta}+e^{-i路\theta}\big)}{e^{i路\theta}-e^{-i路\theta}}$$
Proof

5.6.8 Analytic Function for $\sin^{-1}(x)$ 馃敡

$$\sin^{-1}(x)=-i路\ln\big(i路x+\sqrt{1-x^2}\big)$$
Proof

5.6.9 Analytic Function for $\cos^{-1}(x)$ 馃敡

$$\cos^{-1}(x)=-i路\ln\big(x+i路\sqrt{1-x^2}\big)$$
Proof

5.6.A Analytic Function for $\csc^{-1}(x)$ 馃敡

$$\csc^{-1}(x)=-i路\ln\big(i路x^{-1}+\sqrt{1-x^{-2}}\big)$$
Proof

5.6.B Analytic Function for $\sec^{-1}(x)$ 馃敡

$$\sec^{-1}(x)=-i路\ln\big(x^{-1}+i路\sqrt{1-x^{-2}}\big)$$
Proof

5.6.C Analytic Function for $\tan^{-1}(x)$ 馃敡

$$\tan^{-1}(x)=\frac{i}{2}路ln\bigg(\frac{1-i路x}{1+i路x}\bigg)$$
Proof

5.6.D Analytic Function for $\cot^{-1}(x)$ 馃敡

$$\cot^{-1}(x)=\frac{i}{2}路ln\bigg(\frac{i路x+1}{i路x-1}\bigg)$$
Proof

5.5 5.6 5.7