5.7 Hyperbolic Trigonometry


5.6 ยซ 5.7 ยป 5.8

5.7 Contents

  1. Unit Hyperbola Definitions ๐Ÿ”ง

  2. Hyperbolic Common Identities ๐Ÿ”ง

  3. Limits of Hyperbolic Functions ๐Ÿ”ง

  4. Derivatives of Hyperbolic Functions ๐Ÿ”ง

  5. Real Version of Euler's Formula ๐Ÿ”ง

  6. Analytic Hyperbolic Functions ๐Ÿ”ง

  7. Analytic Hyperbolic Inverses ๐Ÿ”ง


5.7.1 Unit Hyperbola Definitions ๐Ÿ”ง

Hyperbolic trig functions operate similarly as the trig functions on the unit circle, except they neither rotate nor have periodicity. $$\sinh(\theta)=y/h\qquad\text{csch}(\theta)=h/y$$ $$\cosh(\theta)=x/h\qquad\text{sech}(\theta)=h/x$$ $$\tanh(\theta)=y/x\qquad\coth(\theta)=x/y$$ $$\theta=\sinh^{-1}(y/h)\qquad\theta=\text{csch}^{-1}(h/y)$$ $$\theta=\cosh^{-1}(x/h)\qquad\theta=\text{sech}^{-1}(h/x)$$ $$\theta=\tanh^{-1}(y/x)\qquad\theta=\coth^{-1}(x/y)$$
Relations
A unit circle rotated one half radian on the unit double cone along its tangential axis results in the unit hyperbola. The number $1$ rotated one half radian in the complex plane results the imaginary unit $i$. The insertion of $i$ into the unit circle equation results in the unit hyperbola equation. $$x^2+(iยทy)^2=1\medspace โ†’\medspace x^2-y^2=1$$

5.7.2 Hyperbolic Common Identities ๐Ÿ”ง


5.7.3 Limits of Hyperbolic Functions ๐Ÿ”ง


5.7.4 Derivatives of Hyperbolic Functions ๐Ÿ”ง


5.7.5 Real Version of Euler's Formula ๐Ÿ”ง


5.7.6 Analytic Hyperbolic Functions ๐Ÿ”ง


5.7.7 Analytic Hyperbolic Inverses ๐Ÿ”ง


5.6 ยซ 5.7 ยป 5.8