5.3 Differentiation


5.2 Β« 5.3 Β» 5.4

5.3 Contents

  1. Derivative Definition & Function πŸ”§

  2. Notation

  3. Tangent Line πŸ”§

  4. Differentiability πŸ”§

  5. First Derivative Use

  6. Second Derivative Use


5.3.1 Derivative Definition & Function πŸ”§

A function’s instantaneous rate of change along any given point. The derivative function is essentially the slope formula with one point. ddxf(x)=lim⁑xβ†’af(x)βˆ’f(a)xβˆ’a\frac{d}{dx}f(x)=\lim\limits_{xβ†’a}\frac{f(x)-f(a)}{x-a} =lim⁑Δxβ†’0f(x+Ξ”x)βˆ’f(x)Ξ”x=\lim\limits_{\Delta xβ†’0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

5.3.2 Notation

Notation First Second
Leibniz dydxβ€…orβ€…ddxfx\frac{dy}{dx} \medspace\text{or}\medspace \frac{d}{dx}f{x} d2ydx2β€…orβ€…d2dx2fx\frac{d^2y}{dx^2} \medspace\text{or}\medspace \frac{d^2}{dx^2}f{x}
Langrange fβ€²(x)f'(x) fβ€²β€²(x)f''(x)
Newton x˙\dot{x} x¨\ddot{x}
Euler DfDf D2fD^2f

5.3.3 Tangent Line πŸ”§

The point-slope equation for a line parallel to and touching a function at a specific point yβˆ’f(a)=fβ€²(a)(xβˆ’a)y-f(a)=f'(a)(x-a)

5.3.4 Differentiability πŸ”§

A function f(x)f(x) is differentiable at a point aa except in the following conditions

5.3.5 First Derivative Use


5.3.6 Second Derivative Use


5.2 Β« 5.3 Β» 5.4